René Schoof's Algorithm for Computing $\#E(\mathbb{F}_p)$ for an elliptic curve $E : y^2 \equiv x^3 + A \cdot x + B \pmod{p}$

John McGee Radford University 10-Aug-2007

"A four-year-old child could understand that.
Run out and find me a four-year-old child, I can't make head or tail out of it."
- Groucho Marx (Duck Soup-1933)

René Schoof's 1985 paper entitled "Elliptic curves over finite fields and the computation of square roots mod p", details a polynomial time algorithm for determining $\#E(\mathbb{F}_p)$ [3]. The following steps outline Schoof's method.

Let E be an elliptic curve over \mathbb{F}_p given by

(1) $E : y^2 = x^3 + A \cdot x + B$, where $A, B \in \mathbb{F}_p$.

Hasse's Theorem tells us that the cardinality of the group of points is

(2) $\#E(\mathbb{F}_p) = p + 1 - t$, for some t with $|t| \leq 2 \sqrt{q}$.

Let $\phi_p : E(\overline{\mathbb{F}}_p) \rightarrow E(\overline{\mathbb{F}}_p)$ such that $\phi_p((x, y)) = (x^p, y^p)$. Note that this is map of points with coordinates in the algebraic closure of \mathbb{F}_p. Then ϕ_p is an endomorphism called the Frobenius map. It has the following property, crucial to Schoof's algorithm [5]

(3) $\phi_p^2 - t \phi_p + p = 0 \ \forall \ P \in E(\overline{\mathbb{F}}_q)$

We can use (3) to compute $t \pmod{p_i}$ for a set of L primes l_1, l_2, \ldots, l_L such that

(4) $K = \prod_{i=1}^{L} l_i > 4 \sqrt{p}$

The Chinese Remainder Theorem is then applied to the resulting set of congruences to compute the unique

$t \pmod{K}$ such that $|t| \leq 2 \sqrt{q}$.

The order of the group is then given by $\#E(\mathbb{F}_q) = q + 1 - t$. Schoof showed that this algorithm will run time proportional to $\log^9 q$, based on analysis of the number of elementary operations required [1,4]. Details of the algorithm follow.
The division polynomials \(\psi_n \) of an elliptic curve \(E \) are elements of \(\mathbb{F}_p[x, y] \) with the property that \(\psi_n(x, y) = 0 \) if and only if \((x, y) \in E[n] = \{ P \in E(\mathbb{F}_p) \mid n P = O \} \). These polynomials are defined recursively as follows [5]

\[
\begin{align*}
\psi_0 &= 0, \quad \psi_1 = 1, \quad \psi_2 = 2 y \\
\psi_3 &= 3 x^4 + 6 a x^2 + 12 b x - a^2 \\
\psi_4 &= 4 y(x^6 + 5 a x^4 + 20 b x^3 - 5 a^2 x^2 - 4 a b x - 8 b^2 - a^3) \\
\psi_{2n} &= \psi_n(\psi_{n+2} \psi_{n-1} - \psi_{n-2} \psi_{n+1}) \quad n \in \mathbb{Z}, \ n > 2 \\
\psi_{2n+1} &= \psi_{n+2} \psi_n^3 - \psi_{n+1}^2 \psi_n \quad n \in \mathbb{Z}, \ n > 1
\end{align*}
\]

The following polynomials, based on these division polynomials, are used in Schoof's algorithm. Note that during the execution of the algorithm all of the polynomial arithmetic takes place modulo \(\psi_1 \) for small primes \(l \). Note also that these polynomials turn out to be univariate in \(x \) only by computing modulo the relation \(y^2 = x^3 + a x + b \). The numbering refers to the equation numbers in [2]. The derivation of these polynomials [2] is based on the point multiplication formula (5).

\[
(5) \quad n P = \left(x - \frac{\psi_{n+1} \psi_{n-1}}{\psi_n^2}, \frac{\psi_{n+2} \psi_{n-1} - \psi_{n-2} \psi_{n+1}}{4 y \psi_n^3} \right)
\]

\[
\begin{align*}
\alpha &= \psi_{k+2} \psi_{k-1}^2 - \psi_{k-2} \psi_{k+1}^2 - 4 \psi_k^3 x^{\nu^2 + 1} \\
\beta &= 4 y \psi_k (\psi_k^2 (x - x^\nu) - \psi_{k-1} \psi_{k+1}) \\
p_{16}(x, y) &= (x^\nu - x) \psi_k^2 - \psi_{k-1} \psi_{k+1} \\
p_{17}(x, y) &= (x^\nu - x) \psi_w^2 - \psi_{w-1} \psi_{w+1} \\
p_{18}(x, y) &= 4 \psi_w^3 y^{\nu^2 + 1} - \psi_{w+2} \psi_{w-1}^2 - \psi_{w-2} \psi_{w+1}^2 \\
p_{19}(x, y) &= \psi_k^{\nu^2} (\beta^2 (\psi_{k-1} \psi_{k+1} - \psi_k^2 (x^{\nu^2} + x^\nu + x) + \alpha \psi_k^2)) + \psi_k^2 \beta^2 (\psi_{t-1} \psi_{t-1})^\nu \\
p_{19}(x, y) &= 4 y^\nu \psi_k^3 (\alpha \beta^2 (\psi_k^2 (2 x^{\nu^2} + x) - \psi_{k-1} \psi_{k+1}) - \psi_k^2 (x^3 + \beta^3 y^{\nu^2})) - \beta^3 \psi_k^2 (\psi_{t+2} \psi_{t-1}^2 - \psi_{t-2} \psi_{t+1}^2)^\nu
\end{align*}
\]

We can now gives the details of Schoof’s algorithm for \(E : y^2 = x^3 + a x + b \) over \(\mathbb{F}_p \) as follows.

1. If \(\text{gcd}(x^3 + a x + b, \ x^\nu - x) = 1 \) then \(t \equiv 0 \) (mod 2), else \(t \equiv 1 \) (mod 2)
2. Create a set of small primes $S = \{l_i\}$ such that $\prod_{i=1}^{L} l_i > 4\sqrt{p}$.

3. Compute the first $L + 2$ division polynomials ψ_k.

4. For each $l \in S$, compute $k \equiv p \pmod{l}$

5. If $\gcd(p_{16}, \psi_l) \neq 1$ then there exists $P \in E[l]$ such that $\phi_l^2 P = \pm k P$.

6. If k is not a quadratic residue mod l, then $t \equiv 0 \pmod{l}$ else

7. Compute w such that $w^2 \equiv k \pmod{l}$

8. If $\gcd(p_{17}, \psi_l) = 1$ then $t \equiv 0 \pmod{l}$, else

9. If $\gcd(p_{18}, \psi_l) \neq 1$ then $t \equiv 2w \pmod{l}$, else $t \equiv -2w \pmod{l}$.

10. else we are in case two

11. For each $\tau \leq (l + 1)/2$

12. If $\gcd(p_{19}, \psi_l) \neq 1$ then

13. $\phi_l^2 + k \equiv \pm \tau \pmod{l}$ for some point in $E[l]$ so we test

14. If $\gcd(p_{19}, \psi_l) \neq 1$ then $t \equiv \tau \pmod{l}$ else $t \equiv -\tau \pmod{l}$

15. Next τ

16. Next l

17. At this point we have computed $t \pmod{l}$ for all $l_i \in S$,

18. so we can use the Chinese Remainder Theorem to compute

19. $T \equiv t \pmod{N}$ where $N = \prod_{i=1}^{L} l_i$.

20. If T is within Hasse's bounds then $t = T$, else $t \equiv -T \pmod{N}$ and

21. $\# E(F_p) = p + 1 - t$.

This completes the description of Schoof's algorithm.

A version of this algorithm has been developed in *Mathematica* [2] and tested for elliptic curves over fields as large as \mathbb{F}_p with $p \sim 10^{30}$.
References

